4.7 Article

Chain length dependence of polyol synthesis of zinc ferrite nanoparticles: why is diethylene glycol so different?

期刊

DALTON TRANSACTIONS
卷 42, 期 15, 页码 5430-5438

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2dt32026f

关键词

-

资金

  1. Indian Space Research Organization (ISRO)
  2. DST-IRPHA

向作者/读者索取更多资源

Superparamagnetic ZnFe2O4 nanoparticles with size range of 28-38 nm were synthesized by polyol process based on use of varying chain length glycols as solvent. We have offered, for the first time, the plausible mechanism behind in situ formation of zinc ferric oxalate hydroxide hydrate [Fe2Zn(C2O4)(2)(OH)(3)](+)center dot 4H(2)O complex from diethylene and polyethylene glycol. We are also reporting, the magnetic properties of above complexes. We have found a ferromagnetic ordering in precursor complex compounds. The intermediate hydrocarbon chain between the oxalato bridged metal cations plays a crucial role in obtaining anomalous magnetic behavior. ZnFe2O4 nanoparticles obtained after annealing the DEGylated precursor complex (precursor complex formed in diethylene glycol) showed the highest superparamagnetic (SPM) behavior (22.4 emu g(-1)) among others. The reasons for anomalous SPM behavior of ZnFe2O4 nanoparticles are explained on the basis of the degree of inversion of the spinel structure, high surface-to-volume ratio, which causes non-collinear spin arrangement in a surface layer and higher oxygen concentration on the surface of dead organic layer, which increases the unpaired valence electrons leading to uncompensated surface spins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据