4.7 Article

Synthesis, molecular structure, computational study and in vitro anticancer activity of dinuclear thiolato-bridged pentamethylcyclopentadienyl Rh(III) and Ir(III) complexes

期刊

DALTON TRANSACTIONS
卷 42, 期 43, 页码 15457-15463

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3dt51991k

关键词

-

资金

  1. Swiss National Science Foundation
  2. Swiss Confederation for a Swiss government scholarship

向作者/读者索取更多资源

Neutral dinuclear dithiolato-bridged pentamethylcyclopentadienyl Rh(III) complexes of the type (C5Me5)(2)Rh-2(mu-SR)(2)Cl-2 (R = CH2Ph, 1; R = CH2CH2Ph, 2) and cationic dinuclear trithiolato-bridged pentamethylcyclopentadienyl Rh(III) and Ir(III) complexes of the type [(C5Me5)(2)M-2(mu-SR)(3)](+) (M = Rh, R = CH2Ph, 3; M = Rh, R = CH2CH2Ph, 5; M = Rh, R = CH2C6H4-p-tBu, 7: M = Ir, R = CH2Ph, 4; M = Ir, R = CH2CH2Ph, 6; M = Ir, R = CH2C6H4-p-tBu, 8) have been synthesized from the chloro-bridged pentamethylcyclopentadienyl Rh(III) and Ir(III) dimers (C5Me5)(2)M-2(mu-Cl)(2)Cl-2 by reaction with the corresponding thiol derivative (RSH). Complexes 3-8 were isolated as chloride salts. All complexes were obtained in good yield and were fully characterized by spectroscopic methods. The molecular structures of the neutral complexes (1 and 2) show interesting features: the two rhodium atoms are bridged by two thiolato ligands with no metal-metal bonds and the pentamethylcyclopentadienyl and chlorido ligands are oriented syn to each other, an uncommon conformation for such dinuclear complexes. These structural features were rationalized using DFT calculations. Additionally, the antiproliferative activity of the complexes was evaluated against the cancerous A2780 (cisplatin sensitive) and A2780cisR (cisplatin resistant) human ovarian cell lines and on the noncancerous HEK293 human embryonic kidney cells. All complexes were found to be active and the cationic iridium complexes 4, 6 and 8 are particularly cytotoxic, with IC50 values in the nanomolar range (IC50 < 0.1 mu M). The catalytic activity of the complexes for the oxidation of glutathione (GSH) to GSSG was evaluated by NMR spectroscopy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据