4.7 Article

Selectivity of bis-triazinyl bipyridine ligands for americium(III) in Am/Eu separation by solvent extraction. Part 1. Quantum mechanical study on the structures of BTBP complexes and on the energy of the separation

期刊

DALTON TRANSACTIONS
卷 41, 期 47, 页码 14416-14424

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2dt31503c

关键词

-

资金

  1. Euratom-Fission integrated project ACSEPT [FP7-CP-2007-211 267]
  2. Ministry of Science and Education of Poland [897/7, PR UE-EURATOM/2008]
  3. Interdisciplinary Centre of Mathematical and Computer Modelling (ICM) at Warsaw University [G36-9]

向作者/读者索取更多资源

Theoretical studies were carried out on two pairs of americium and europium complexes formed by tetra-N-dentate lipophilic BTBP ligands, neutral [ML(NO3)(3)] and cationic [ML2](3+) where M = Am-III or Eu-III, and L = 6,6'-bis-(5,6-diethyl-1,2,4-triazin-3-yl)-2,2'-bipyridine (C2-BTBP). Molecular structures of the complexes have been optimized at the B3LYP/6-31G(d) level and total energies of the complexes in various media were estimated using single point calculations performed at the B3LYP/6-311G(d,p) and MP2/6-311G(d,p) levels of theory. In the calculations americium and europium ions were treated using pseudo-relativistic Stuttgart-Dresden effective core potentials and the accompanying basis sets. Selectivity in solvent extraction separation of two metal ions is a co-operative function of contributions from all extractable metal complexes, which depend on physico-chemical properties of each individual complex and on its relative amount in the system. Semi-quantitative analysis of BTBP selectivity in the Am/Eu separation process, based on the contributions from the two pairs of Am-III and Eu-III complexes, has been carried out. To calculate the energy of Am/Eu separation, a model of the extraction process was used, consisting of complex formation in water and transfer of the formed complex to the organic phase. Under the assumptions discussed in the paper, this simple two-step model results in reliable values of the calculated differences in the energy changes for each pair of the Am/Eu complexes in both steps of the process. The greater thermodynamic stability (in water) of the Am-BTBP complexes, as compared with the analogous Eu species, caused by greater covalency of the Am-N than Eu-N bonds, is most likely the main reason for BTBP selectivity in the separation of the two metal ions. The other potential reason, i.e. differences in lipophilic properties of the analogous complexes of Am and Eu, is less important with regard to this selectivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据