4.7 Article

A practical guide to the construction of radiometallated bioconjugates for positron emission tomography

期刊

DALTON TRANSACTIONS
卷 40, 期 23, 页码 6168-6195

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0dt01595d

关键词

-

资金

  1. NIH [NIH R01 CA138468, NIH F32 CA144138]
  2. NATIONAL CANCER INSTITUTE [F32CA144138, P30CA008748, R01CA172546, R01CA138468] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Positron emission tomography (PET) has become a vital imaging modality in the diagnosis and treatment of disease, most notably cancer. A wide array of small molecule PET radiotracers have been developed that employ the short half-life radionuclides C-11, N-13, O-15, and F-18. However, PET radiopharmaceuticals based on biomolecular targeting vectors have been the subject of dramatically increased research in both the laboratory and the clinic. Typically based on antibodies, oligopeptides, or oligonucleotides, these tracers have longer biological half-lives than their small molecule counterparts and thus require labeling with radionuclides with longer, complementary radioactive half-lives, such as the metallic isotopes Cu-64, Ga-68, Y-86, and Zr-89. Each bioconjugate radiopharmaceutical has four component parts: biomolecular vector, radiometal, chelator, and covalent link between chelator and biomolecule. With the exception of the radiometal, a tremendous variety of choices exists for each of these pieces, and a plethora of different chelation, conjugation, and radiometallation strategies have been utilized to create agents ranging from Ga-68-labeled pentapeptides to Zr-89-labeled monoclonal antibodies. Herein, the authors present a practical guide to the construction of radiometal-based PET bioconjugates, in which the design choices and synthetic details of a wide range of biomolecular tracers from the literature are collected in a single reference. In assembling this information, the authors hope both to illuminate the diverse methods employed in the synthesis of these agents and also to create a useful reference for molecular imaging researchers both experienced and new to the field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据