4.7 Article

Metal-based anti-diabetic drugs: advances and challenges

期刊

DALTON TRANSACTIONS
卷 40, 期 44, 页码 11675-11686

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1dt10380f

关键词

-

资金

  1. Australian Research Council
  2. Australian Synchrotron
  3. Photon Factory
  4. Advanced Photon Source
  5. Access to Major Facilities Program for access to the Stanford Synchrotron Radiation Lightsource
  6. Medical Therapies Ltd
  7. University of Sydney

向作者/读者索取更多资源

The current status and likely future directions of complexes of V(V/IV), Cr(III), Mo(VI), W(VI), Zn(II), Cu(II), and Mn(III) as potential oral drugs against type 2 diabetes are reviewed. We propose a unified model of extra- and intracellular mechanisms of anti-diabetic efficacies of V(V/IV), Mo(VI), W(VI), and Cr(III), centred on high-oxidation-state oxido/peroxido species that inhibit protein tyrosine phosphatases (PTPs) involved in insulin signalling. The postulated oxidative mechanism of anti-diabetic activity of Cr(III) via carcinogenic Cr(VI/V) (which adds to safety concerns) is consistent with recent clinical trials on Cr(III) picolinate, where activity was apparent only in patients with poorly controlled diabetes (high oxidative stress), and the correlation between the anti-diabetic activities and ease of oxidation of Cr(III) supplements and their metabolites in vivo. Zn(II) and Cu(II) anti-diabetics act via different mechanisms and are unlikely to be used as specific anti-diabetics due to their diverse and unpredictable biological activities. Hence, future research directions are likely to centre on enhancing the bioavailability and selectivity of V(V/IV), Mo(VI), or W(VI) drugs. The strategy of potentiating circulating insulin with metal ions has distinct therapeutic advantages over interventions that stimulate the release of more insulin, or use insulin mimetics, because of many adverse side-effects of increased levels of insulin, including increased risks of cancer and cardiovascular diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据