4.7 Article

Pd(II)-promoted direct cross-coupling reaction of arenes via highly regioselective aromatic C-H activation: a theoretical study

期刊

DALTON TRANSACTIONS
卷 39, 期 13, 页码 3279-3289

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b922312f

关键词

-

资金

  1. Grant-in-Aids on basis research [1530012]
  2. Molecular Theory for Real Systems [461]
  3. Ministry of Education, Science, Sports, and Culture

向作者/读者索取更多资源

The direct cross-coupling reaction of arenes promoted by Pd(OAc)(2) is synthetically very useful because the preparation of a haloarene as a substrate is not necessary. This reaction interestingly only occurs in the presence of benzoquinone (BQ). DFT, MP2 to MP4(SDQ), and CCSD(T) computations elucidated the whole mechanism of this cross-coupling reaction and the key roles of BQ. The first step is the heterolytic C-H activation of benzo[h] quinoline (HBzq) by Pd(OAc)(2) to afford Pd(Bzq)(OAc). The Pd center is more electron-rich in Pd(Bzq)(OAc) than in Pd(OAc)(2). Hence, BQ easily coordinates to Pd(Bzq)(OAc) with a low activation barrier to afford a distorted square planar complex Pd(Bzq)(OAc)(BQ) which is as stable as Pd(Bzq)(OAc). Then, the second C-H activation of benzene occurs with a moderate activation barrier and small endothermicity. The final step is the reductive elimination which occurs with little barrier. The rate-determining step of the overall reaction is the second C-H activation whose activation barrier is considerably higher than that of the first C-H activation. BQ plays a key role in accelerating this reaction; (i) the phenyl group must change its position a lot to reach the transition state in the reductive elimination from the square planar intermediate Pd(Ph)(Bzq)(OAc) but only moderately in the reaction from the trigonal bipyramidal intermediate Pd(Ph)(Bzq)(OAc)(BQ). This is because BQ suppresses the phenyl group to take a position at a distance from the Bzq. (ii) BQ stabilizes the transition state and the product complex by the back-donation interaction. In the absence of BQ, the reductive elimination step has a much higher activation barrier. Though it was expected that the BQ coordination accelerates the second C-H activation of benzene by decreasing the electron density of Pd in Pd(Bzq)(OAc), the activation barrier of this second C-H activation is little influenced by BQ.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据