4.7 Article

Density functional theory study of the oxoperoxo vanadium(V) complexes of glycolic acid. Structural correlations with NMR chemical shifts

期刊

DALTON TRANSACTIONS
卷 -, 期 44, 页码 9735-9745

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b910033d

关键词

-

资金

  1. Portuguese Ministry for Science, Technology and Higher EducationSFRH/BPD/26415/2006
  2. Department of Physics of the University of Coimbra (Milipeia Cluster)

向作者/读者索取更多资源

The DFT B3LYP/SBKJC method has been used to calculate the gas-phase optimized geometries of the glycolate oxoperoxo vanadium(V) complexes [V2O2(OO)(2)(gly)(2)](2-), [V2O3(OO)(gly)(2)](2-) and [VO(OO)(gly)(H2O)](-). The V-51, O-17, C-13 and H-1 chemical shifts have been calculated for the theoretical geometries in all-electron DFT calculations at the UDFT-IGLO-PW91 level and have been subsequently compared with the experimental chemical shifts in solution. In spite of being applied to the isolated molecules, the calculations allowed satisfactory reproduction of the multinuclear NMR solution chemical shifts of the complexes, suggesting that the theoretical structures are probably close to those in solution. The effects of structural changes on the V-51 and O-17 NMR chemical shifts have been analysed using the referred computational methodologies for one of the glycolate complexes and for several small molecules taken as models. These calculations showed that structural modi. cations far from the metal nucleus do not significantly affect the metal chemical shift. This finding explains why it is possible to establish reference scales that correlate the type of complex (type of metal centre associated with a certain type of ligand) with its typical region of metal chemical shifts. It has also been found that the V=O bond length is the dominant geometrical parameter determining both delta V-51 and the oxo delta O-17 in this kind of complex.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据