4.8 Article

Size-Tuned ZnO Nanocrucible Arrays for Magnetic Nanodot Synthesis via Atomic Layer Deposition-Assisted Block Polymer Lithography

期刊

ACS NANO
卷 9, 期 2, 页码 1379-1387

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn505731n

关键词

atomic layer deposition; block copolymer; nanolithography; bit patterned media; nanocrucible; magnetic nanodots

资金

  1. National Science Foundation (NSF) through the University of Minnesota MSREC [DMR-0819885, DMR-1420013]
  2. NSF through the MRSEC program
  3. Minnesota Nano Center

向作者/读者索取更多资源

Low-temperature atomic layer deposition of conformal ZnO on a self-assembled block polymer lithographic template comprising well-ordered, vertically aligned cylindrical pores within a poly(styrene) (PS) matrix was used to produce nanocrucible templates with pore diameters tunable via ZnO thickness. Starting from a PS template with a hexagonal array of 30 nm diameter pores on a 45 nm pitch, the ZnO thickness was progressively increased to narrow the pore diameter to as low as 14 nm. Upon removal of the PS by heat treatment in air at 500 degrees C to form an array of size-tunable ZnO nanocrucibles, permalloy (Ni80Fe20) was evaporated at normal incidence, filling the pores and creating an overlayer. Argon ion beam milling was then used to etch back the overlayer (a Damascene-type process), leaving a well-ordered array of isolated ZnO nanocrucibles filled with permalloy nanodots. Microscopy and temperature-dependent magnetometry verified the diameter reduction with increasing ZnO thickness. The largest diameter (30 nm) dots exhibit a ferromagnetic multidomain/vortex state at 300 K, with relatively weakly temperature-dependent coercivity. Reducing the diameter leads to a crossover to a single-domain state and eventually superparamagnetism at sufficiently high temperature, in quantitative agreement with expectations. We argue that this approach could render this form of block polymer lithography compatible with high-temperature processing (as required for technologically important high perpendicular anisotropy ordered alloys, for instance), in addition to enabling separation-dependent studies to probe interdot magnetostatic interactions

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据