4.7 Article

Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel

期刊

JOURNAL OF NUCLEAR MATERIALS
卷 459, 期 -, 页码 13-19

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jnucmat.2015.01.004

关键词

-

资金

  1. Major Research plan of the National Natural Science Foundation of China [91226204]

向作者/读者索取更多资源

The effect of Si in the range of 0.05-0.77 wt.% on the microstructure, tensile properties and impact toughness of reduced activation ferritic/martensitic (RAFM) steels has been investigated. An increase in Si content affected the prior austenite grain size resulting in an increase in the tensile strength at room temperature. The tensile strength of steels tested above 773 K did not change significantly with the addition of Si, which was due to the diminished carbide hardening effect and boundary strengthening effect. Detailed fractographic analysis revealed that tear fractures occurred in the samples tensile tested at room temperature, while cup and cone fractures were found in samples tensile tested at temperatures above 773 K, which were induced by the easing of dislocation pile-ups. The ductile-to-brittle transition temperature (DBTT) decreased when the Si content increased to 0.22 wt.%. However, the DBTT increased when the Si content reached 0.77 wt.% and this was due to the precipitation of Laves phase. The RAFM steel with approximately 0.22 wt.% Si content was found to possess an optimized combination of microstructure, tensile properties and impact toughness. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据