4.3 Article

Time-Resolved Microscopy for Imaging Lanthanide Luminescence in Living Cells

期刊

CYTOMETRY PART A
卷 77A, 期 12, 页码 1113-1125

出版社

WILEY
DOI: 10.1002/cyto.a.20964

关键词

fluorescence microscopy; lanthanide; time-resolved; signal-to-noise ratio

资金

  1. National Institutes of Health [R01GM081030]
  2. Chicago Biomedical Consortium [C-008]

向作者/读者索取更多资源

Time-resolved luminescence (TRL) microscopy can image signals from lanthanide coordination complexes or other probes with long emission lifetimes, thereby eliminating short-lifetime (<100 ns) autofluorescence background from biological specimens. However, lanthanide complexes emit far fewer photons per unit time than conventional fluorescent probes, making it difficult to rapidly acquire high quality images at probe concentrations that are relevant to live cell experiments. This article describes the development and characterization of a TRL microscope that employs a light-emitting diode (LED, lambda(em) = 365 nm) for pulsed epi-illumination and an intensified charge-coupled device (ICCD) camera for gated, widefield detection. Europium chelate-impregnated microspheres were used to evaluate instrument performance in terms of short-lifetime fluorescence background rejection, photon collection efficiency, image contrast, and signal-to-noise ratio (SNR). About 200 nm microspheres were imaged within the time resolution limit of the ICCD (66.7 ms) with complete autofluorescence suppression. About 40 nm microspheres containing similar to 400 chelate molecules were detected within similar to 1-s acquisition times. A luminescent terbium complex, Lumi4-Tb (R), was introduced into the cytoplasm of cultured cells at an estimated concentration of 300 nM by the method of osmotic lysis of pinocytic vesicles. Time-resolved images of the living, terbium complex-loaded cells were acquired within acquisition times as short as 333 ms, and the effects of increased exposure time and frame summing on image contrast and SNR were evaluated. The performance analyses show that TRL microscopy is sufficiently sensitive and precise to allow high-resolution, quantitative imaging of lanthanide luminescence in living cells under physiologically relevant experimental conditions. (C) 2010 International Society for Advancement of Cytometry

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据