4.3 Article

Evolving Generalized Voronoi Diagrams for Accurate Cellular Image Segmentation

期刊

CYTOMETRY PART A
卷 77A, 期 4, 页码 379-386

出版社

WILEY
DOI: 10.1002/cyto.a.20876

关键词

image cytometry; cell segmentation; fluorescence microscopy; generalized Voronoi diagram

向作者/读者索取更多资源

Analyzing cellular morphologies on a cell-by-cell basis is vital for drug discovery, cell biology, and many other biological studies. Interactions between cells in their culture environments cause cells to touch each other in acquired microscopy images. Because of this phenomenon, cell segmentation is a challenging task, especially when the cells are of similar brightness and of highly variable shapes. The concept of topological dependence and the maximum common boundary (MCB) algorithm are presented in our previous work (Yu et al., Cytometry Part A 2009;75A:289-297). However, the MCB algorithm suffers a few shortcomings, such as low computational efficiency and difficulties in generalizing to higher dimensions. To overcome these limitations, we present the evolving generalized Voronoi diagram (EGVD) algorithm. Utilizing image intensity and geometric information, EGVD preserves topological dependence easily in both 2D and 3D images, such that touching cells can be segmented satisfactorily. A systematic comparison with other methods demonstrates that EGVD is accurate and much more efficient. (C) 2010 International Society for Advancement of Cytometry

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据