4.3 Article

A Phosphatidylcholine-BODIPY 581/591 Conjugate Allows Mapping of Oxidative Stress in P. falciparum-Infected Erythrocytes

期刊

CYTOMETRY PART A
卷 75A, 期 5, 页码 390-404

出版社

WILEY
DOI: 10.1002/cyto.a.20704

关键词

malaria; Plasmodium falciparum; oxidative stress; BODIPY 581/591-PC; lipid oxidation

资金

  1. National Health
  2. Medical Research Council of Australia

向作者/读者索取更多资源

The chromophore, BODIPY 581/591, has an extended conjugated system that reacts with oxygen centered-radicals leading to changes in its spectral characteristics. Fatty acid-conjugated BODIPY 581/591 transfers readily between membrane bilayers and can be used as a sensor of oxidative stress in cell populations. We report here the use of a phosphatidylcholine (PC) derivative of BODIPY 581/591, which transfers much less rapidly between membranes. This allows the analysis of oxidative stress in individual cells and in different compartments within cells. Quantitative imaging and flow cytometry were used to measure the ratio of fully conjugated to oxidized probe in model systems and in Plasmodium falciparum-infected erythrocytes. We observed an increase in the oxidation of the parasite-associated BODIPY 581/591-PC as the intraerythrocytic parasite matures. By contrast, BODIPY 581/591-PC associated with the erythrocyte membrane experiences a low level of oxidation even in the later stages of parasite development. Treatment with a pro-oxidant compound caused increased oxidation of the probe in the parasite compartment, but less so in the host cell membrane. Conversely, treatment with ferricyanide increases oxidation of the probe in the erythrocyte cell membrane but does not inhibit parasite growth. Chromatographic analysis of the lipids in infected erythrocytes shows no evidence for loss of a-tocopherol or the accumulation of lipid hydroperoxides indicating that, despite the increased oxidative stress, the parasite membranes remain protected from substantial lipid oxidation. We have established BODIPY 581/591-PC as a useful probe of the spatial distribution of oxidative stress in P. falciparum-infected erythrocytes; however, the probe appears to be more sensitive to oxidative damage than endogenous lipids. (c) 2009 international Society for Advancement of Cytometry

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据