4.6 Review

Antiviral RNA recognition and assembly by RLR family innate immune sensors

期刊

CYTOKINE & GROWTH FACTOR REVIEWS
卷 25, 期 5, 页码 507-512

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.cytogfr.2014.07.006

关键词

RIG-I; MDA5; LGP2; Interferon; Antiviral

资金

  1. NIH [AI073919, AI50707]
  2. NIH Cellular and Molecular Basis of Disease Training Grant [T32GM008061]

向作者/读者索取更多资源

Virus-encoded molecular signatures, such as cytosolic double-stranded or otherwise biochemically distinct RNA species, trigger cellular antiviral signaling. Cytoplasmic proteins recognize these non-self RNAs and activate signal transduction pathways that drive the expression of virus-induced genes, including the primary antiviral cytokine, IFN beta, and diverse direct and indirect antiviral effectors [1-4]. One important group of cytosolic RNA sensors known as the RIG-I-like receptors (RLRs) is comprised of three proteins that are similar in structure and function. The RLR proteins, RIG-I, MDA5, and LGP2, share the ability to recognize nucleic acid signatures produced by virus infections and activate antiviral signaling. Emerging evidence indicates that RNA detection by RLRs culminates in the assembly of dynamic multimeric ribonucleoprotein (RNP) complexes. These RNPs can act as signaling platforms that are capable of propagating and amplifying antiviral signaling responses. Despite their common domain structures and similar abilities to induce antiviral responses, the RLRs differ in their enzymatic properties, their intrinsic abilities to recognize RNA, and their ability to assemble into filamentous complexes. This molecular specialization has enabled the RLRs to recognize and respond to diverse virus infections, and to mediate both unique and overlapping functions in immune regulation [5,6]. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据