4.1 Article

Aneuploidy in the Human Cleavage Stage Embryo

期刊

CYTOGENETIC AND GENOME RESEARCH
卷 133, 期 2-4, 页码 141-148

出版社

KARGER
DOI: 10.1159/000323794

关键词

Aneuploidy; Checkpoint genes; Cleavage stage; Embryo; Mitotic nondisjunction; Mosaicism; Post-zygotic

向作者/读者索取更多资源

The cleavage stage embryo (days 1-3) stands out due to the high level of chromosomal anomalies, especially mosaicism that arises prior to global embryonic genome activation. Molecular cytogenetic studies show that an average of 60% of in vitro derived embryos have at least one aneuploid cell by the time they are 3 days old. However, comprehensive studies of the chromosome content of individual cells have revealed that 25% of these embryos have no aneuploid cells, a fact that sits well with the knowledge that at most 1 in 5 have the capacity to implant. The evidence is that extensive mosaicism, affecting several chromosomes, interferes with development to a greater extent than does uniform aneuploidy. Follow-up studies on embryos after pre-implantation genetic aneuploidy screening indicate that the frequency of meiotic errors varies according to the referral reason, with the highest frequency being recorded for the recurrent miscarriage category and the lowest in the repeated implantation failure group where younger women have a good response to ovarian stimulation. The exceptionally high incidence of pre- and post-zygotic chromosomal anomalies seen in early human embryos is thus the product of several mechanisms. Firstly, the error-prone cell cycle during the embryonic cleavage stage and secondly, parental susceptibility to meiotic and mitotic chromosomal instability together with their general genetic background. Copyright (C) 2011 S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据