4.7 Article Proceedings Paper

Active colloidal suspensions: Clustering and phase behavior

期刊

JOURNAL OF NON-CRYSTALLINE SOLIDS
卷 407, 期 -, 页码 367-375

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jnoncrysol.2014.08.011

关键词

Clustering; Fluctuation; Aggregation

向作者/读者索取更多资源

We review recent experimental, numerical, and analytical results on active suspensions of self-propelled colloidal beads moving in (quasi-)two dimensions. Active colloids form part of the larger theme of active matter, which is noted for the emergence of collective dynamic phenomena away from thermal equilibrium. Both in experiments and computer simulations, a separation into dense aggregates, i.e., clusters, and a dilute gas phase has been reported even when attractive interactions and an alignment mechanism are absent. Here, we describe three experimental setups, discuss the different propelling mechanisms, and summarize the evidence for phase separation. We then compare experimental observations with numerical studies based on a minimal model of colloidal swimmers. Finally, we review a mean-field approach derived from first principles, which provides a theoretical framework for the density instability causing the phase separation in active colloids. (c) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据