4.0 Article

Proteomics and Epigenetic Mechanisms in Stem Cells

期刊

CURRENT PROTEOMICS
卷 11, 期 3, 页码 193-209

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/157016461103140922164050

关键词

Epigenetic; histone modifications; methylation of DNA; proteomic profile; reprogramming; stem cells

资金

  1. Fondazione Cassa di Risparmio di Perugia, Italy [2010.011.0445]

向作者/读者索取更多资源

Epigenetic mechanisms orchestrate inheritable concerted networks essential for chromatin remodeling. Molecular interplays include post-translational modifications to histones, DNA methylation, activity of small non coding RNAs, govern activation and silencing of gene expression and define the molecular basis of pluripotency, reprogramming, early human development and differentiation. The implications of epigenetic regulation in maintaining stem cell fate determination are well known. Thus: (i) embryonic stem cells (ESCs) seem to employ selected histone modification mechanisms for maintaining pluripotency and for the activation of multipotency programs; (ii) induced pluripotent stem cells, while recapitulating the overall features of the ESCs epigenome, express differences in DNA methylation; (iii) the lineage-restricted process of adult mesenchymal stem cell differentiation involves epigenetic regulation and consists of a unique pattern of DNA methylation and histone modifications; (iv) the epigenetic profiles of adult stem cells correlate with a more restricted differentiation potential as compared to ESCs. This review will discuss the role of epigenetic regulation in pluripotency, stemness and cell fate specification, taking advantage of recent discoveries showing that mass spectrometry and proteomics are become indispensable tools in epigenetic research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据