4.5 Article

(-)-Epigallocatechin-3-Gallate Modulates Spinal Cord Neuronal Degeneration by Enhancing Growth-Associated Protein 43, B-Cell Lymphoma 2, and Decreasing B-Cell Lymphoma 2-Associated X Protein Expression after Sciatic Nerve Crush Injury

期刊

JOURNAL OF NEUROTRAUMA
卷 32, 期 3, 页码 170-184

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/neu.2014.3491

关键词

surviving; neuroprotection; green tea; apoptosis; neuroregeneration

资金

  1. Animal Resource Center, Health Science Center, Kuwait University

向作者/读者索取更多资源

Our previous studies have established that (-)-epigallocatechin-3-gallate (EGCG) has both neuroprotective and -regenerative capacity after sciatic nerve injury. Moreover, this improvement was evident on the behavioral level. The aim of this study was to investigate the central effects of ECGC on spinal cord motor neurons after sciatic nerve injury. Our study showed that administering 50 mg/kg intraperitoneally i.p. of EGCG to sciatic nerve-injured rats improved their performance on different motor functions and mechanical hyperesthesia neurobehavioral tests. Histological analysis of spinal cords of EGCG-treated sciatic nerve-injured (CRUSH+ECGC) animals showed an increase in the number of neurons in the anterior horn, when compared to the naive, sham, and saline-treated sciatic nerve-injured (CRUSH) control groups. Additionally, immunohistochemical study of spinal cord sections revealed that EGCG reduced the expression of glial fibrillary acidic protein and increased the expression of growth-associated protein 43, a marker of regenerating axons. Finally, EGCG reduced the ratio of B-cell lymphoma 2 (Bcl-2)-associated X protein/Bcl-2 and increased the expression of survivin gene. This study may shed some light on the future clinical use of EGCG and its constituents in the treatment of peripheral nerve injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据