4.5 Review

Inhibition of Zinc Metallopeptidases in Cardiovascular Disease - From Unity to Trinity, or Duality?

期刊

CURRENT PHARMACEUTICAL DESIGN
卷 15, 期 31, 页码 3606-3621

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/138161209789271889

关键词

Angiotensin-converting enzyme; neutral endopeptidase; endothelin converting enzyme; ACE2; cardiovascular disease; vasopepidase inhibitor

资金

  1. Wellcome Trust, U.K. [070060]
  2. National Research Foundation, South Africa
  3. Commissariat a l'Energie Atomique

向作者/读者索取更多资源

The fusion of therapeutics and diagnostic medicine in an effort to provide individualized pharmacotherapy frequently requires the manipulation of drugs that target different enzymes and receptors. To this end, and as a strategy to increase the efficiency of drug development pipelines, new chemical entities are often developed that interact with more than one target. Angiotensin-converting enzyme (ACE), its homologue ACE2, neutral endopeptidase (NEP) and endothelin-converting enzyme (ECE-1) are metallopeptidases that are involved in the metabolism of biologically active peptides that impact on the regulation of the cardiovascular system. The benefit of the ACE/NEP; NEP/ECE and ACE/NEP/ECE dual and triple inhibitors is not only their possible increased efficacy with respect to blood pressure control, but also their other activities, such as antiproliferative, anti-fibrotic and anti-inflammatory, mediated by angiotensin II and atrial natriuretic peptide. Over the last few years a number of three-dimensional structures of these metallopeptidases have advanced our understanding of the mode of interaction between various ligands and their target binding sites. This information is invaluable in the rational design of new and improved drugs. Here we review the structural basis for the design of single and multiple metallopeptidase inhibitors for the treatment of cardiovascular disease. Moreover, we present recent advances in the development of ACE/ECE-1 inhibitors that are likely to have high potency and improved side effect profiles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据