4.2 Review

Molecular determinants of extracellular matrix mineralization in bone and blood vessels

期刊

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/MNH.0b013e3283393a2b

关键词

artery; biomineralization; blood vessels; bone; calcification; vascular calcification

资金

  1. Canadian Institutes of Health Research
  2. Enobia Pharma, Montreal

向作者/读者索取更多资源

Purpose of review Mineralization imparts important biomechanical and other functional properties to bones and teeth. Ectopic pathologic mineralization, however, occurring in soft tissues such as blood vessels, kidneys, articular cartilage and also in body fluids, including urine and synovial fluid, is generally debilitating, often painful and typically is destructive of compromised tissue. Here we review new findings on direct molecular determinants of mineralization operating locally at the level of the extracellular matrix, with a focus on bone and blood vessels. Recent findings Accumulating evidence indicates important key roles for secreted noncollagenous proteins in regulating mineralization, wherein they also contribute structurally to the scaffolding properties of the extracellular matrix. Mineral-binding proteins contain conserved acidic peptide domains (often highly phosphorylated), which bind strongly to calcium within the apatitic mineral phase of bone and calcified blood vessels to regulate crystal growth. Other recent work has underscored the importance of the small-molecule mineralization inhibitor pyrophosphate in inhibiting tissue mineralization - an inhibition released through its enzymatic cleavage by tissue-nonspecific alkaline phosphatase. Recent findings on mechanisms involved in matrix vesicle-mediated mineralization are also discussed. Summary Mechanistic details are emerging that describe a scenario wherein the combined actions of mineral-binding noncollagenous matrix peptides/proteins within a scaffolding of collagen (and also elastin in blood vessels), phosphatases and matrix vesicles all contribute importantly to promoting or limiting mineralization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据