4.6 Review

Stochastic gene expression as a molecular switch for viral latency

期刊

CURRENT OPINION IN MICROBIOLOGY
卷 12, 期 4, 页码 460-466

出版社

CURRENT BIOLOGY LTD
DOI: 10.1016/j.mib.2009.06.016

关键词

-

资金

  1. NIH [K25GM083395]

向作者/读者索取更多资源

Stochastic 'noise' arises from random thermal fluctuations in the concentration of protein, RNA, or other molecules within the cell and is an unavoidable aspect of life at the single-cell level. Evidence is accumulating that this biochemical noise crucially influences cellular auto-regulatory circuits and can 'flip' genetic switches to drive probabilistic fate decisions in bacteria, viruses, cancer, and stem cells. Here, we review how stochastic gene expression in key auto-regulatory proteins can control fate determination between latency and productive replication in both phage-lambda and HIV-1. We highlight important new studies that synthetically manipulate auto-regulatory circuitry and noise, to bias HIV-1's ability to enter proviral latency. We argue that an appreciation of noise in gene expression may shed light on the mystery of animal virus latency and that strategies to manipulate noise may have impact on anti-viral therapeutics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据