4.6 Review

Understanding suspension rheology of anisotropically-charged platy minerals from direct interaction force measurement using AFM

期刊

出版社

ELSEVIER SCIENCE LONDON
DOI: 10.1016/j.cocis.2013.02.008

关键词

Electrokinetics; Anisotropic surface charges; DLVO theory; Rheology; Talc; Atomic force microscope

资金

  1. NSERC Industrial Research Chair in Oil Sands Engineering
  2. National Science Foundation of China [51274129]

向作者/读者索取更多资源

Based on the classical DLVO (Derjaguin-Landau-Verwey-Overbeek) theory, the maximum coagulation of fine particle suspensions would be predicated to occur at the point of zero charge (pzc) of the particles. Although this prediction has been fairly accurate for isotropic particles, the mismatch has been frequently reported for suspensions of anisotropically-charged or charge-mosaic particles, such as talc. Followed by successful preparation of sufficiently smooth talc edge surfaces using the ultramicrotome method for the colloidal force measurements using atomic force microscope (AFM), the anisotropic surface charge properties, i.e., surface charge characteristics of basal planes and edge surfaces of talc at different pH values were determined by fitting the measured force profiles between the AFM tip and both basal plane and edge surfaces to the DLVO theory. The talc basal planes were found to carry a permanent negative charge, while the charge on its edge surfaces was highly pH-dependent. The AFM-derived surface (Stern) potential values of talc basal planes and edge surfaces enable us to calculate the interaction energy for various associations between different charge-mosaic surfaces. The attractive interaction between talc basal planes and edge surfaces was found to dominate the rheological behavior. This study clearly demonstrates the necessity of determining anisotropic surface charge characteristics to improve the understanding of rheological properties and hence to better control their process performance. (c) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据