4.6 Review

Approaches to hydration, old and new: Insights through Hofmeister effects

期刊

出版社

ELSEVIER SCIENCE LONDON
DOI: 10.1016/j.cocis.2011.04.006

关键词

Ionic dispersion forces; Surface hydration; Hydration forces; Polarisability

资金

  1. Australian Research Council

向作者/读者索取更多资源

Hydration effects in colloidal interactions or problems involving electrolytes are usually taken care of by effective electrostatic potentials that subsume notions like hydrated ion size, Gurney potentials, soft and hard, chaotropic and cosmotropic ions, and inner and outer Helmholtz planes. Quantum fluctuation (dispersion) forces between ions and between ions and surfaces are missing from classical theories, at least not explicit in standard approaches to hydration. This paper outlines an evolving back-to-basics approach that allows these ion specific forces to be included in theories quantitatively. In this approach ab initio quantum mechanics is used to calculate dynamic polarisabilities of ions and to quantify bare ion radii. The ionic dispersion potentials between ions, and between ions and surfaces in water can then be given explicit analytic form from an extension of Lifshitz theory. They are included in the theory along with electrostatic potentials. In a first stage the primitive (continuum solvent) model provides a skeletal theory on which to build in hydration. Extension of the ab initio calculations to include dressed ions, i.e. water hydration shells for cosmotropic ions, quadrupolar and octupolar polarisability contributions and; for colloids, allowance for a surface hydration layer, permits quantification of Hofmeister effects and Gurney potentials. With these extensions, primary hydration forces (short range repulsion) arise due to an interplay between surface hydration layers and specific ion interactions. Apparent longer range secondary hydration forces are shown to be a consequence of ion-surface dispersion interactions and are not true hydration forces. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据