4.7 Article

Human Umbilical Tissue-Derived Cells Promote Synapse Formation and Neurite Outgrowth via Thrombospondin Family Proteins

期刊

JOURNAL OF NEUROSCIENCE
卷 35, 期 47, 页码 15649-15665

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.1364-15.2015

关键词

cell therapy; regenerative medicine; retinal ganglion cells; synapse; thrombospondin; umbilical cord tissue-derived cells

资金

  1. Janssen Research and Development

向作者/读者索取更多资源

Cell therapy demonstrates great potential for the treatment of neurological disorders. Human umbilical tissue-derived cells (hUTCs) were previously shown to have protective and regenerative effects in animal models of stroke and retinal degeneration, but the underlying therapeutic mechanisms are unknown. Because synaptic dysfunction, synapse loss, degeneration of neuronal processes, and neuronal death are hallmarks of neurological diseases and retinal degenerations, we tested whether hUTCs contribute to tissue repair and regeneration by stimulating synapse formation, neurite outgrowth, and neuronal survival. To do so, we used a purified rat retinal ganglion cell culture system and found that hUTCs secrete factors that strongly promote excitatory synaptic connectivity and enhance neuronal survival. Additionally, we demonstrated that hUTCs support neurite outgrowth under normal culture conditions and in the presence of the growth-inhibitory proteins chondroitin sulfate proteoglycan, myelin basic protein, or Nogo-A (reticulon 4). Furthermore, through biochemical fractionation and pharmacology, we identified the major hUTC-secreted synaptogenic factors as the thrombospondin family proteins (TSPs), TSP1, TSP2, and TSP4. Silencing TSP expression in hUTCs, using small RNA interference, eliminated both the synaptogenic function of these cells and their ability to promote neurite outgrowth. However, the majority of the prosurvival functions of hUTC-conditioned media was spared after TSP knockdown, indicating that hUTCs secrete additional neurotrophic factors. Together, our findings demonstrate that hUTCs affect multiple aspects of neuronal health and connectivity through secreted factors, and each of these paracrine effects may individually contribute to the therapeutic function of these cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据