4.7 Article

Ubiquitin-Synaptobrevin Fusion Protein Causes Degeneration of Presynaptic Motor Terminals in Mice

期刊

JOURNAL OF NEUROSCIENCE
卷 35, 期 33, 页码 11514-11531

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.5288-14.2015

关键词

neurodegeneration; neuromuscular junction; synapse; synaptic degeneration; synaptic transmission; transgenic mice

资金

  1. National Institutes of Health/National Institute of Neurological Disorders and Stroke [NS-055028]
  2. Robert Packard Center for ALS Research at Johns Hopkins
  3. Cain Foundation in Medical Research

向作者/读者索取更多资源

Protein aggregates containing ubiquitin (Ub) are commonly observed in neurodegenerative disorders, implicating the involvement of the ubiquitin proteasome system (UPS) in their pathogenesis. Here, we aimed to generate a mouse model for monitoring UPS function using a green fluorescent protein (GFP)-based substrate that carries a noncleavable N-terminal ubiquitin moiety (Ub(G76V)). We engineered transgenic mice expressing a fusion protein, consisting of the following: (1) UbG76V, GFP, and a synaptic vesicle protein synaptobrevin-2 (Ub(G76V)-GFP-Syb2); (2) GFP-Syb2; or (3) Ub(G76V)-GFP-Syntaxin1, all under the control of a neuron-specific Thy-1 promoter. As expected, Ub(G76V)-GFP-Syb2, GFP-Syb2, and Ub(G76V)-GFP-Sytaxin1 were highly expressed in neurons, such as motoneurons and motor nerve terminals of the neuromuscular junction (NMJ). Surprisingly, Ub(G76V)-GFP-Syb2 mice developed progressive adult-onset degeneration of motor nerve terminals, whereas GFP-Syb2 and Ub(G76V)-GFP-Syntaxin1 mice were normal. The degeneration of nerve terminals in Ub(G76V)-GFP-Syb2 mice was preceded by a progressive impairment of synaptic transmission at the NMJs. Biochemical analyses demonstrated that Ub(G76V)-GFP-Syb2 interacted with SNAP-25 and Syntaxin1, the SNARE partners of synaptobrevin. Ultrastructural analyses revealed a marked reduction in synaptic vesicle density, accompanying an accumulation of tubulovesicular structures at presynaptic nerve terminals. These morphological defects were largely restricted to motor nerve terminals, as the ultrastructure of motoneuron somata appeared to be normal at the stages when synaptic nerve terminals degenerated. Furthermore, synaptic vesicle endocytosis and membrane trafficking were impaired in Ub(G76V)-GFP-Syb2 mice. These findings indicate that Ub(G76V)-GFP-Syb2 may compete with endogenous synaptobrevin, acting as a gain-of-function mutation that impedes SNARE function, resulting in the depletion of synaptic vesicles and degeneration of the nerve terminals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据