4.5 Review

Accuracy-rate tradeoffs: how do enzymes meet demands of selectivity and catalytic efficiency?

期刊

CURRENT OPINION IN CHEMICAL BIOLOGY
卷 21, 期 -, 页码 73-80

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.cbpa.2014.05.008

关键词

-

资金

  1. Israel Science Foundation

向作者/读者索取更多资源

I discuss some physico-chemical and evolutionary aspects of enzyme accuracy (selectivity, specificity) end speed (turnover rate, processivity). Accuracy can be a beneficial side-product of active-sites being refined to proficiently convert a given substrate into one product. However, exclusion of undesirable, non-cognate substrates is also an explicitly evolved trait that may come with a cost. I define two schematic mechanisms. Ground-state discrimination applies to enzymes where selectivity is achieved primarily at the level of substrate binding. Exemplified by DNA methyltransferases and the ribosome, ground-state discrimination imposes strong accuracy-rate tradeoffs. Alternatively, transition-state discrimination, applies to relatively small substrates where substrate binding and chemistry are efficiently coupled, and evokes weaker tradeoffs. Overall, the mechanistic, structural and evolutionary basis of enzymatic accuracy-rate tradeoffs merits deeper understanding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据