4.5 Review

Combinatorial biosynthesis of plant medicinal polyketides by microorganisms

期刊

CURRENT OPINION IN CHEMICAL BIOLOGY
卷 13, 期 2, 页码 197-204

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.cbpa.2009.02.004

关键词

-

向作者/读者索取更多资源

Combinatorial biosynthesis includes an approach in which genes from different organisms are assembled to design and construct an artificial gene cluster for production of bioactive compounds. An Escherichia coli system carrying artificial biosynthetic pathways for production of plant-specific medicinal polyketides, such as flavonoids, stilbenoids, isoflavonoids, and curcuminoids, was designed and expressed. Starting with amino acids tyrosine and phenylalanine as substrates, this system yielded, for example, naringenin, resveratrol, genistein, and curcumin. Supplementation of unnatural carboxylic acids as precursors to the E coli cells led to production of unnatural compounds. Addition of modification enzymes to the artificial pathways led to production of natural and unnatural flavonols, flavones, and methylated resveratrols. This microbial system is promising not only for construction of larger libraries by employing other polyketide synthases and modification enzymes of various origins as members of the artificial pathway but also for efficient use of the potential of the host microorganisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据