4.7 Review

Genomic insights into organohalide respiration

期刊

CURRENT OPINION IN BIOTECHNOLOGY
卷 24, 期 3, 页码 498-505

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.copbio.2013.02.014

关键词

-

向作者/读者索取更多资源

In the last few years there has been a burst of genomes released for organohalide respiring bacteria (referred to as OHRB herein though the process is otherwise known as dehalorespiration, reductive dechlorination, or halorespiration). The microorganisms are employed in bioremediation of sites contaminated with chlorinated ethene, ethane, and methanes, as well as chlorinated aromatics. Of particular note are the releases of the first Dehalogenimonas genome (a Dehalococcoides-related Chloroflexi) and not one but seven Dehalobacter (meta)genomes. Collectively, genomes from these three genera (Dehalococcoides, Dehalogenimonas, and Dehalobacter) clearly support their niche as obligate OHRB, while other genera with sequenced genomes (Desulfitobacterium, Geobacter, and Anaeromyxobacter) maintain organohalide respiration (OHR) as one of many possible energy conserving respiration strategies. The obligate OHRB genomes consistently harbor 10-39 unique reductive dehalogenase (RDase) genes and they are flanked with not only transcriptional regulators but also transposition related genes. Active transposition likely plays a key role in the accumulation of such a broad and tightly regulated dehalogenase repertoire. Functional assays are now the bottleneck for genome-informed discovery of dehalogenase substrate ranges.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据