4.7 Review

Applications of computational science for understanding enzymatic deconstruction of cellulose

期刊

CURRENT OPINION IN BIOTECHNOLOGY
卷 22, 期 2, 页码 231-238

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.copbio.2010.11.005

关键词

-

资金

  1. DOE Office of the Biomass
  2. DOE BER BioEnergy Science Center (cellulosome modeling)
  3. DOE ASCR

向作者/读者索取更多资源

Understanding the molecular-level mechanisms that enzymes employ to deconstruct plant cell walls is a fundamental scientific challenge with significant ramifications for renewable fuel production from biomass. In nature, bacteria and fungi use enzyme cocktails that include processive and non-processive cellulases and hemicellulases to convert cellulose and hemicellulose to soluble sugars. Catalyzed by an accelerated biofuels R&D portfolio, there is now a wealth of new structural and experimental insights related to cellulases and the structure of plant cell walls. From this background, computational approaches commonly used in other fields are now poised to offer insights complementary to experiments designed to probe mechanisms of plant cell wall deconstruction. Here we outline the current status of computational approaches for a collection of critical problems in cellulose deconstruction. We discuss path sampling methods to measure rates of elementary steps of enzyme action, coarse-grained modeling for understanding macromolecular, cellulosomal complexes, methods to screen for enzyme improvements, and studies of cellulose at the molecular level. Overall, simulation is a complementary tool to understand carbohydrate-active enzymes and plant cell walls, which will enable industrial processes for the production of advanced, renewable fuels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据