4.4 Article

Brain-wide analysis of electrophysiological diversity yields novel categorization of mammalian neuron types

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 113, 期 10, 页码 3474-3489

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00237.2015

关键词

neuron biophysics; intrinsic membrane properties; electrophysiology; neuron diversity; neuroinformatics; text mining; databases

资金

  1. National Science Foundation Graduate Fellowship
  2. National Institute of Deafness and Other Communications Disorders [F31-DC-013490, F32-DC-010535, R01-DC-005798]
  3. National Institute of Mental Health [R01-MH-081905]
  4. Pennsylvania Department of Health's Commonwealth Universal Research Enhancement Program

向作者/读者索取更多资源

For decades, neurophysiologists have characterized the biophysical properties of a rich diversity of neuron types. However, identifying common features and computational roles shared across neuron types is made more difficult by inconsistent conventions for collecting and reporting biophysical data. Here, we leverage NeuroElectro, a literature-based database of electrophysiological properties (www.neuroelectro.org), to better understand neuronal diversity, both within and across neuron types, and the confounding influences of methodological variability. We show that experimental conditions (e.g., electrode types, recording temperatures, or animal age) can explain a substantial degree of the literature-reported biophysical variability observed within a neuron type. Critically, accounting for experimental metadata enables massive cross-study data normalization and reveals that electrophysiological data are far more reproducible across laboratories than previously appreciated. Using this normalized dataset, we find that neuron types throughout the brain cluster by biophysical properties into six to nine superclasses. These classes include intuitive clusters, such as fast-spiking basket cells, as well as previously unrecognized clusters, including a novel class of cortical and olfactory bulb interneurons that exhibit persistent activity at theta-band frequencies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据