4.2 Article

Systemic Administration of Fluoro-Gold for the Histological Assessment of Vascular Structure, Integrity and Damage

期刊

CURRENT NEUROVASCULAR RESEARCH
卷 11, 期 1, 页码 31-47

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1567202610666131124235011

关键词

Fluoro-Gold; Blood-brain barrier; Vascular elements; Hemorrhage; Kainate; Amphetamine

资金

  1. FDA [E7295, E7312, E7519]

向作者/读者索取更多资源

Fluoro-Gold (F-G) has been used extensively as a fluorescent retrograde neuronal-track tracer in the past. We now report that intraperitoneal administration of 10 to 30 mg/kg of F-G from 30 min to 7 days prior to sacrifice labels vascular endothelial cells of the brain, choroid plexus and meninges and can be used to assess vascular integrity and damage. F-G vascular labeling co-localized with rat endothelial cell antigen (RECA-1) in the membrane. F-G also intensely labeled the nuclei of the endothelial cells, and co-localized with propidium iodide staining of these nuclei. As well, the administration of F-G during neurotoxic insults produced by amphetamine, kainic acid or penetrating wound to the brain can detect where vascular leakage/hemorrhage has occurred. Histological methods to detect F-G labeled brain vasculature were performed in the same manner as that used for fluorescent visualization of neuronal elements labeled with F-G after perfusion fixation and coronal sectioning (15 to 40 mu m) of the brain. This in vivo F-G labeling of endothelial cells and their nuclei yields a clear picture of the integrity of the vasculature and can be used to detect changes in structure. Vascular leaks after penetrating wounds through the cortex and striatum, hyperthermic amphetamine exposure or excitotoxic kainate exposure were detected by F-G in the extracellular space and via parenchymal F-G subsequently labeling the terminals and neurons adjacent to the lesioned or damaged vasculature. Further studies are necessary to determine the extent of the leakage necessary to detect vasculature damage. Visualization of the F-G labeling of vasculature structure and leakage is compatible with standard fluorescent immuno-labeling methods used to detect the presence and distribution of a protein in histological sections. This method should be directly applicable to studying brain vascular damage that occurs in the progression of Alzheimer's disease, diabetes and for monitoring the brain vascular changes during development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据