4.2 Article

Peroxisome Proliferator-Activated Receptor-α Activation Protects Brain Capillary Endothelial Cells from Oxygen-Glucose Deprivation-Induced Hyperpermeability in the Blood-Brain Barrier

期刊

CURRENT NEUROVASCULAR RESEARCH
卷 6, 期 3, 页码 181-193

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/156720209788970081

关键词

Blood-Brain barrier; endothelium; in vitro model; ischaemia; neuroprotection; Peroxisome Proliferator-activated receptor-alpha

资金

  1. ANR (Agence Nationale de la Recherche) [IFR-114 IMPRT]
  2. Institut de Medecine Predictive et de Recherche Therapeutique
  3. European Union's Seventh Framework Programme [FP7/2007-2013]
  4. European Stroke Network [201024, 202213]

向作者/读者索取更多资源

That promising neuroprotectants failed to demonstrate benefit against stroke highlights the great difficulties to translate preclinical pharmacological effects in clinical outcomes. Part of this hurdle implies the complex response to injury of the neurovascular unit increasing the cerebrovascular permeability at the level of the blood-brain barrier (BBB). Previous studies reported neuroprotection in animal models upon activation of the nuclear receptor PPAR alpha(peroxisome proliferator-activated receptor)alpha, but the cellular targets at the BBB level remain largely unexplored. Here, to study whether PPAR-alpha activation acts on BBB permeability, we adapted a mouse BBB cell model to ischaemic conditions at the stage of occlusion defined in vitro as oxygen-glucose deprivation (OGD). This model consists of a co-culture of brain capillary endothelial cells (ECs) on a filter insert placed upon a rat glial cell culture. The EC monolayer permeability increase induced by 4 h of OGD was significantly restricted after treatment with the PPAR-alpha agonist fenofibric acid FA) 24 h before or at the onset of OGD. Treatments of separated ECs or glial cells showed that this protective effect was conferred by BBB ECs but not glial cells. Furthermore, co-cultures with ECs from PPAR-alpha deficient mice revealed that FA had no effect on OGD-induced hyperpermeability. No transcriptional modulation of classical PPAR-alpha target genes such as SOD, ICAM-1, VCAM-1, ACO, CPT-1, PDK-4 or ET-1 was observed in wild type mouse ECs. In conclusion, these results suggest that part of the preventive PPAR-alpha-mediated protection may occur via BBB ECs by limiting hyperpermeability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据