4.4 Article

Altered excitatory and inhibitory inputs to striatal medium-sized spiny neurons and cortical pyramidal neurons in the Q175 mouse model of Huntington's disease

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 113, 期 7, 页码 2953-2966

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.01056.2014

关键词

cerebral cortex; electrophysiology; Huntington's disease; Q175; striatum

资金

  1. CHDI, Inc.
  2. National Institute of Neurological Disorders and Stroke Grant [NS-41574]

向作者/读者索取更多资源

The Q175 knockin mouse model of Huntington's disease (HD) carries a CAG trinucleotide expansion of the human mutant huntingtin allele in its native mouse genomic context and recapitulates the genotype more closely than transgenic models. In this study we examined the progression of changes in intrinsic membrane properties and excitatory and inhibitory synaptic transmission, using whole cell patch-clamp recordings of medium-sized spiny neurons (MSNs) in the dorsolateral striatum and cortical pyramidal neurons (CPNs) in layers 2/3 of the primary motor cortex in brain slices from heterozygous (Q175(+/-)) and homozygous (Q175(+/+)) mice. Input resistance in MSNs from Q175(+/+) and Q175(+/-) mice was significantly increased compared with wild-type (WT) littermates beginning at 2 mo. Furthermore, the frequency of spontaneous and miniature excitatory postsynaptic currents (EPSCs) was significantly reduced in MSNs from Q175(+/+) and Q175(+/-) mice compared with WTs beginning at 7 mo. In contrast, the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) and IPSC-to-EPSC ratios were increased in MSNs from Q175(+/-) mice beginning at 2 mo. Morphologically, significant decreases in spine density of MSNs from Q175(+/-) and Q175(+/+) mice occurred at 7 and 12 mo. In CPNs, sIPSC frequencies and IPSC-to-EPSC ratios were significantly increased in Q175(+/-) mice compared with WTs at 12 mo. There were no changes in intrinsic membrane properties or morphology. In summary, we show a number of alterations in electrophysiological and morphological properties of MSNs in Q175 mice that are similar to other HD mouse models. However, unlike other models, CPN inhibitory activity is increased in Q175(+/-) mice, indicating reduced cortical excitability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据