4.6 Review

Molecular Response to Hypericin-Induced Photodamage

期刊

CURRENT MEDICINAL CHEMISTRY
卷 19, 期 6, 页码 793-798

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/092986712799034842

关键词

Apoptosis; autophagy; hypericin; molecular; photodynamic therapy; reactive oxygen species; signalling pathway

向作者/读者索取更多资源

Hypericin (Hyp) is used as a powerful natural photosensitizer in photodynamic therapy (PDT). After selective accumulation in tumor tissue, vessels and matrix, and activated by visible light, it destroys the tumor mainly via generation of reactive oxygen species. After photoactivation, molecular biological mechanisms lead to different cellular endpoints: biostimulation (increased proliferation rate), repair of the damage leading to rescue of the cells, autophagy, apoptosis and necrosis. Growth stimulation after low-dose Hyp-PDT seems to be induced via the p38 or JNK survival pathways. Since both pathways are also activated by stress, modification of these pathways may also contribute to rescue mechanisms as well as to damage processing. By increasing PDT doses beyond sublethal damage, stress response pathways are activated such as the ER-stress pathway with disruption of Ca2+ homeostasis and unfolded protein response. This leads either to apoptosis or autophagic cell death, dependent on the availability of Bax/Bak. Apoptosis triggered directly at the mitochondria or by the ER-stress response is executed via the mitochondrial pathway, whereas in some cases, the receptor-mediated pathway is preferred. If the damage is too severe, the cellular energy level low and/or the cytoplasma membrane leaky, cells will die necrotically. The different modes of cellular responses depend mainly on the PDT-protocol, photosensitizer localisation, cellular damage protection and the available intracellular energy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据