4.3 Article

Interrelation Between Protein Synthesis, Proteostasis and Life Span

期刊

CURRENT GENOMICS
卷 15, 期 1, 页码 66-75

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1389202915666140210210542

关键词

Aging; Chaperone; Life span; mRNA Translation; Proteostasis; Stress response; UPR

资金

  1. DFG Excellence Cluster NeuroCure

向作者/读者索取更多资源

The production of newly synthesized proteins is a key process of protein homeostasis that initiates the biosynthetic flux of proteins and thereby determines the composition, stability and functionality of the proteome. Protein synthesis is highly regulated on multiple levels to adapt the proteome to environmental and physiological challenges such as aging and proteotoxic conditions. Imbalances of protein folding conditions are sensed by the cell that then trigger a cascade of signaling pathways aiming to restore the protein folding equilibrium. One regulatory node to rebalance proteostasis upon stress is the control of protein synthesis itself. Translation is reduced as an immediate response to perturbations of the protein folding equilibrium that can be observed in the cytosol as well as in the organelles such as the endoplasmatic reticulum and mitochondria. As reduction of protein synthesis is linked to life span increase, the signaling pathways regulating protein synthesis might be putative targets for treatments of age-related diseases. Eukaryotic cells have evolved a complex system for protein synthesis regulation and this review will summarize cellular strategies to regulate mRNA translation upon stress and its impact on longevity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据