4.4 Review

Interaction of Carbon Monoxide with Transition Metals: Evolutionary Insights into Drug Target Discovery

期刊

CURRENT DRUG TARGETS
卷 11, 期 12, 页码 1595-1604

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1389450111009011595

关键词

Carbon monoxide; transition metals; carbon monoxide-releasing molecules; hemoglobin; mitochondria

向作者/读者索取更多资源

The perception that carbon monoxide (CO) is poisonous and life-threatening for mammalian organisms stems from its intrinsic propensity to bind iron in hemoglobin, a reaction that ultimately leads to impaired oxygen delivery to tissues. From evolutionary and chemical perspectives, however, CO is one of the most essential molecules in the formation of biological components and its interaction with transition metals is at the origin of primordial cell signaling. Not surprisingly, mammals have gradually evolved systems to finely control the synthesis and the sensing of this gaseous molecule. Cells are indeed continuously exposed to small quantities of CO produced endogenously during the degradation of heme by constitutive and inducible heme oxygenase enzymes. We have gradually learnt that heme oxygenase-derived carbon monoxide (CO) serves as a ubiquitous signaling mediator which could be exploited for therapeutic purposes. The development of transition metal carbonyls as prototypic carbon monoxide-releasing molecules (CO-RMs) represents a novel stratagem for a safer delivery of CO-based pharmaceuticals in the treatment of various pathological disorders. This review looks back at evolution to analyze and argue that a dynamic interaction of CO with specific intracellular metal centers is the common denominator for the diversified beneficial effects mediated by this gaseous molecule.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据