4.8 Article

STIL Microcephaly Mutations Interfere with APC/C-Mediated Degradation and Cause Centriole Amplification

期刊

CURRENT BIOLOGY
卷 24, 期 4, 页码 351-360

出版社

CELL PRESS
DOI: 10.1016/j.cub.2013.12.016

关键词

-

资金

  1. Swiss National Science Foundation [310030B_149641/1]
  2. Werner Siemens-Foundation (Zug, Switzerland)

向作者/读者索取更多资源

Background: STIL is a centriole duplication factor that localizes to the procentriolar cartwheel region, and mutations in STIL are associated with autosomal recessive primary microcephaly (MCPH). Excess STIL triggers centriole amplification, raising the question of how STIL levels are regulated. Results: Using fluorescence time-lapse imaging, we identified a two-step process that culminates in the elimination of STIL at the end of mitosis. First, at nuclear envelope breakdown, Cdk1 triggers the translocation of STIL from centrosomes to the cytoplasm. Subsequently, the cytoplasmic bulk of STIL is degraded via the anaphase-promoting complex/cyclosome (APC/C)-proteasome pathway. We identify a C-terminal KEN box as critical for STIL degradation. Remarkably, this KEN box is deleted in MCPH mutants of STIL, rendering STIL resistant to proteasomal degradation and causing centriole amplification. Conclusions: Our results reveal a role for Cdk1 in STIL dissociation from centrosomes during early mitosis, with implications for the timing of cartwheel disassembly. Additionally, we propose that centriole amplification triggered by STIL stabilization is the underlying cause of microcephaly in human patients with corresponding STIL mutations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据