4.8 Article

An Alternative Root for the Eukaryote Tree of Life

期刊

CURRENT BIOLOGY
卷 24, 期 4, 页码 465-470

出版社

CELL PRESS
DOI: 10.1016/j.cub.2014.01.036

关键词

-

资金

  1. Swedish Research Council (Vetenskapradet)

向作者/读者索取更多资源

The root of the eukaryote tree of life defines some of the most fundamental relationships among species. It is also critical for defining the last eukaryote common ancestor (LECA), the shared heritage of all extant species. The unikont-bikont root has been the reigning paradigm for eukaryotes for more than 10 years [1] but is becoming increasingly controversial [2-4]. We developed a carefully vetted data set, consisting of 37 nuclear-encoded proteins of close bacterial ancestry (euBacs) and their closest bacterial relatives, augmented by deep sequencing of the Acrasis kona (Heterolobosea, Discoba) transcriptome. Phylogenetic analysis of these data produces a highly robust, fully resolved global phylogeny of eukaryotes. The tree sorts all examined eukaryotes into three megagroups and identifies the Discoba, and potentially its parent taxon Excavata [5], as the sister group to the bulk of known eukaryote diversity, the proposed Neozoa (Amorphea + Stramenopila+Alveolata+Rhizaria+Plantae [SARP] [6]). All major alternative hypotheses are rejected with as little as similar to 50% of the data, and this resolution is unaffected by the presence of fast-evolving alignment positions or distant outgroup sequences. This neozoan-excavate'' root revises hypotheses of early eukaryote evolution and highlights the importance of the poorly studied Discoba for understanding the evolution of eukaryotic diversity and basic cellular processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据