4.8 Article

Repeated Origin of Three-Dimensional Leaf Venation Releases Constraints on the Evolution of Succulence in Plants

期刊

CURRENT BIOLOGY
卷 23, 期 8, 页码 722-726

出版社

CELL PRESS
DOI: 10.1016/j.cub.2013.03.029

关键词

-

资金

  1. National Science Foundation [DEB-1026611]
  2. Division Of Environmental Biology
  3. Direct For Biological Sciences [1026611] Funding Source: National Science Foundation

向作者/读者索取更多资源

Succulent water storage is a prominent feature among plants adapted to arid zones, but we know little about how succulence evolves and how it is integrated into organs already tasked with multiple functions. Increased volume in succulent leaves, for example, may result in longer transport distances between veins and the, cells that they supply, which in turn could negatively impact photosynthesis [1-4]. We quantified water storage [5] in group of 83 closely related species to examine the evolutionary dynamics of succulence and leaf venation. In most leaves, vein density decreased with increasing succulence, resulting in significant increases in the path length of water from veins to evaporative surfaces. The most succulent leaves, however, had a distinct three-dimensional (3D) venation pattern, which evolved 11-12 times within this small lineage, likely via multiple developmental pathways. 3D venation resets internal leaf distances, maintaining moderate vein density in extremely succulent tissues and suggesting that the evolution of extreme succulence is constrained by the need to maintain an efficient leaf hydraulic system. The repeated evolution of 3D venation decouples leaf water storage from hydraulic path length, facilitating the evolutionary exploration of novel phenotypic space.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据