4.8 Article

Motor Recovery after Spinal Cord Injury Enhanced by Strengthening Corticospinal Synaptic Transmission

期刊

CURRENT BIOLOGY
卷 22, 期 24, 页码 2355-2361

出版社

CELL PRESS
DOI: 10.1016/j.cub.2012.10.046

关键词

-

资金

  1. The National Institute of Neurological Disorders and Stroke, The National Institutes of Health [R01 NS076589]
  2. Paralyzed Veterans of America [2821]

向作者/读者索取更多资源

The corticospinal tract is an important target for motor recovery after spinal cord injury (SCI) in animals and humans [1-5]. Voluntary motor output depends on the efficacy of synapses between corticospinal axons and spinal motoneurons, which can be modulated by the precise timing of neuronal spikes [6-8]. Using noninvasive techniques, we developed tailored protocols for precise timing of the arrival of descending and peripheral volleys at corticospinal-motoneuronal synapses of an intrinsic finger muscle in humans with chronic incomplete SCI. We found that arrival of presynaptic volleys prior to motoneuron discharge enhanced corticospinal transmission and hand voluntary motor output. The reverse order of volley arrival and sham stimulation did not affect or decreased voluntary motor output and electrophysiological outcomes. These findings are the first demonstration that spike timing-dependent plasticity of residual corticospinal-motoneuronal synapses provides a mechanism to improve motor function after SCI. Modulation of residual corticospinal-motoneuronal synapses may present a novel therapeutic target for enhancing voluntary motor output in motor disorders affecting the corticospinal tract.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据