4.8 Article

Parallel Selection Mapping Using Artificially Selected Mice Reveals Body Weight Control Loci

期刊

CURRENT BIOLOGY
卷 22, 期 9, 页码 794-800

出版社

CELL PRESS
DOI: 10.1016/j.cub.2012.03.011

关键词

-

资金

  1. VolkswagenStiftung [I/84 774]

向作者/读者索取更多资源

Understanding how polygenic traits evolve under selection is an unsolved problem [1], because challenges exist for identifying genes underlying a complex trait and understanding how multilocus selection operates in the genome. Here we study polygenic response to selection using artificial selection experiments. Inbred strains from seven independent long-term selection experiments for extreme mouse body weight (high lines weigh 42-77 g versus 16-40 g in control lines) [2] were genotyped at 527,572 SNPs to identify loci controlling body weight. We identified 67 parallel selected regions (PSRs) where high lines share variants rarely found among the controls. By comparing allele frequencies in one selection experiment [2-4] against its unselected control, we found classical selective sweeps centered on the PSRs. We present evidence supporting two G protein-coupled receptors GPR133 and PrIhras positional candidates controlling body weight. Artificial selection may mimic natural selection in the wild: compared to control loci, we detected reduced heterozygosity in PSRs in unusually large wild mice on islands. Many PSRs overlap loci associated with human height variation [5], possibly through evolutionary conserved functional pathways. Our data suggest that parallel selection on complex traits may evoke parallel responses at many genes involved in diverse but relevant pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据