4.8 Article

LUX ARRHYTHMO Encodes a Nighttime Repressor of Circadian Gene Expression in the Arabidopsis Core Clock

期刊

CURRENT BIOLOGY
卷 21, 期 2, 页码 126-133

出版社

CELL PRESS
DOI: 10.1016/j.cub.2010.12.021

关键词

-

资金

  1. National Institutes of Health [R01 HG003985]
  2. National Research Service Award [GM083585]
  3. European Molecular Biology Organization ALTF [236-2005]
  4. [R01 GM67837]
  5. [GM50006]

向作者/读者索取更多资源

Circadian clocks provide an adaptive advantage by allowing organisms to anticipate daily and seasonal environmental changes [1, 2]. Eukaryotic oscillators rely on complex hierarchical networks composed of transcriptional and posttranslational regulatory circuits [3]. In Arabidopsis, current representations of the circadian clock consist of three or four interlocked transcriptional feedback loops [3, 4]. Although molecular components contributing to different domains of these circuits have been described, how the loops are connected at the molecular level is not fully understood. Genetic screens previously identified LUX ARRHYTHMO (LUX) [5], also known as PHYTOCLOCK1 (PCL1) [6], an evening-expressed putative transcription factor essential for circadian rhythmicity. We determined the in vitro DNA-binding specificity for LUX by using universal protein binding microarrays; we then demonstrated that LUX directly regulates the expression of PSEUDO RESPONSE REGULATOR9 (PRR9), a major component of the morning transcriptional feedback circuit, through association with the newly discovered DNA binding site. We also show that LUX binds to its own promoter, defining a new negative autoregulatory feedback loop within the core clock. These novel connections between the archetypal loops of the Arabidopsis clock represent a significant advance toward defining the molecular dynamics underlying the circadian network in plants and provide the first mechanistic insight into the molecular function of the previously orphan clock factor LUX.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据