4.8 Article

DNA Methylation Is Dispensable for the Growth and Survival of the Extraembryonic Lineages

期刊

CURRENT BIOLOGY
卷 20, 期 16, 页码 1452-1457

出版社

CELL PRESS
DOI: 10.1016/j.cub.2010.06.050

关键词

-

资金

  1. Grants-in-Aid for Scientific Research [22510220] Funding Source: KAKEN

向作者/读者索取更多资源

DNA methylation regulates development and many epigenetic processes in mammals [1], and it is required for somatic cell growth and survival [2, 3]. In contrast, embryonic stem (ES) cells can self-renew without DNA methylation [4-6]. It remains unclear whether any lineage-committed cells can survive without DNA-methylation machineries. Unlike in somatic cells, DNA methylation is dispensable for imprinting and X-inactivation in the extraembryonic lineages [7-12]. In ES cells, DNA methylation prevents differentiation into the trophectodermal fate [13]. Here, we created triple-knockout (TKO) mouse embryos deficient for the active DNA methyltransferases Dnmt1, Dnmt3a, and Dnmt3b (TKO) by nuclear transfer (NT), and we examined their development. In chimeric TKO-NT and WT embryos, few TKO cells were found in the embryo proper, but they contributed to extraembryonic tissues. TKO ES cells showed increasing cell death during their differentiation into epiblast lineages, but not during differentiation into extraembryonic lineages. Furthermore, we successfully established trophoblastic stem cells (ntTS cells) from TKO-NT blastocysts. These TKO ntTS cells could self-renew, and they retained the fundamental gene expression patterns of stem cells. Our findings indicated that extraembryonic-lineage cells can survive and proliferate in the absence of DNA methyltransferases and that a cell's response to the stress of epigenomic damage is cell type dependent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据