4.8 Article

Peripheral Visual Circuits Functionally Segregate Motion and Phototaxis Behaviors in the Fly

期刊

CURRENT BIOLOGY
卷 19, 期 7, 页码 613-619

出版社

CELL PRESS
DOI: 10.1016/j.cub.2009.02.053

关键词

-

资金

  1. Whitehall Foundation [2006-12-10]
  2. National Science Foundation [IOS0718325]

向作者/读者索取更多资源

Like the mammalian visual cortex, the fly visual system is organized into retinotopic columns [1, 2]. A widely accepted biophysical model for computing visual motion, the elementary motion detector proposed nearly 50 years ago [3] posits a temporal correlation of spatially separated visual inputs implemented across neighboring retinotopic visual columns. Whereas the inputs are defined [4], the neural substrate for motion computation remains enigmatic. Indeed, it is not known where in the visual processing hierarchy the computation occurs [5]. Here, we combine genetic manipulations with a novel high-throughput dynamic behavioral analysis system to dissect visual circuits required for directional optomotor responses. An enhancer trap screen of synapse-inactivated neural circuits revealed one particularly striking phenotype, which is completely insensitive to motion yet displays fully intact fast phototaxis, indicating that these animals are generally capable of seeing and walking but are unable to respond to motion stimuli. The enhancer circuit is localized within the first optic relay and strongly labels the only columnar interneuron known to interact with neighboring columns both in the lamina and medulla [6], spatial synaptic interactions that correspond with the two dominant axes of elementary motion detectors on the retinal lattice [7].

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据