4.8 Article

Local Cortical Tension by Myosin II Guides 3D Endothelial Cell Branching

期刊

CURRENT BIOLOGY
卷 19, 期 3, 页码 260-265

出版社

CELL PRESS
DOI: 10.1016/j.cub.2008.12.045

关键词

-

资金

  1. NIH/NHLBI

向作者/读者索取更多资源

A key feature of angiogenesis is directional control of endothelial cell (EC) morphogenesis and movement [1]. During angiogenic sprouting, endothelial tip cells directionally branch from existing vessels in response to biochemical cues such as VEGF or hypoxia and migrate and invade the surrounding extracellular matrix (ECM) in a process that requires ECM remodeling by matrix metalloproteases (MMPs) [2-4]. Tip EC branching is mediated by directional protrusion of subcellular pseudopodial branches [5, 6]. Here, we seek to understand how EC pseudopodial branching is locally regulated to directionally guide angiogenesis. We develop an in vitro 3D EC model system in which migrating ECs display branched pseudopodia morphodynamics similar to those in living zebrafish. Using this system, we find that ECM stiffness and ROCK-mediated myosin 11 activity inhibit EC pseudopodial branch initiation. Myosin 11 is dynamically localized to the EC cortex and is partially released under conditions that promote branching. Local depletion of cortical myosin 11 precedes branch initiation, and initiation can be induced by local inhibition of myosin 11 activity. Thus, local downregulation of myosin 11 cortical contraction allows pseudopodium initiation to mediate EC branching and hence guide directional migration and angiogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据