4.8 Article

EEG Responses to Visual Landmarks in Flying Pigeons

期刊

CURRENT BIOLOGY
卷 19, 期 14, 页码 1159-1166

出版社

CELL PRESS
DOI: 10.1016/j.cub.2009.05.070

关键词

-

资金

  1. Swiss National Science Foundation
  2. SCOPES [111081]
  3. NCCR
  4. Swiss Homing Pigeon Foundation

向作者/读者索取更多资源

Background: GPS analysis of flight trajectories of pigeons can reveal that topographic features influence their flight paths. Recording electrical brain activity that reflects attentional processing could indicate objects of interest that do not cause changes in the flight path. Therefore, we investigated whether crossing particular visual landmarks when homing from a familiar release site is associated with changes in EEG. Results: Birds carried both data-loggers for recording GPS position and EEG during flight. First, we classified characteristic EEG frequencies of caged birds and found five main bands: A: 0-3, B: 3-12, C: 12-60, D: 60-130, and E: 130-200 Hz. We analyzed changes in these activity bands when pigeons were released over sea (a featureless environment) and over land. Passing over the coastline and other prominent landmarks produced a pattern of EEG alterations consisting of two phases: activation of EEG in the high-frequency bands (D and/or E), followed by activation of C. Overlaying the EEG activity with GPS tracks allowed us to identify topographical features of interest for the pigeons that were not recognizable by distinct changes of their flight path. Conclusions: We provide evidence that EEG analysis can identify landmarks and objects of interest during homing. Middle-frequency activity (C) reflects visual perception of prominent landmarks, whereas activation of higher frequencies (D and E) is linked with information processing at a higher level. Activation of E bands is likely to reflect an initial process of orientation and is not necessarily linked with processing of visual information.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据