4.8 Article

Spindle Fusion Requires Dynein-Mediated Sliding of Oppositely Oriented Microtubules

期刊

CURRENT BIOLOGY
卷 19, 期 4, 页码 287-296

出版社

CELL PRESS
DOI: 10.1016/j.cub.2009.01.055

关键词

-

资金

  1. National Institute of General Medicine [F32GM080049, GM24364, GM60678]
  2. National Cancer Institute [CA078048-09]

向作者/读者索取更多资源

Background: Bipolar spindle assembly is critical for achieving accurate segregation of chromosomes. In the absence of centrosomes, meiotic spindles achieve bipolarity by a combination of chromosome-initiated microtubule nucleation and stabilization and motor-driven organization of microtubules. Once assembled, the spindle structure is maintained on a relatively long time scale despite the high turnover of the microtubules that comprise it. To study the underlying mechanisms responsible for spindle assembly and steady-state maintenance, we used microneedle manipulation of preassembled spindles in Xenopus egg extracts. Results: When two meiotic spindles were brought close enough together, they interacted, creating an interconnected microtubule structure with supernumerary poles. Without exception, the perturbed system eventually re-established bipolarity, forming a single spindle of normal shape and size. Bipolar spindle fusion was blocked when cytoplasmic dynein function was perturbed, suggesting a critical role for the motor in this process. The fusion of Eg5-inhibited monopoles also required dynein function but only occurred if the initial interpolar separation was less than twice the microtubule radius of a typical monopole. Conclusions: Our experiments uniquely illustrate the architectural plasticity of the spindle and reveal a robust ability of the system to attain a bipolar morphology. We hypothesize that a major mechanism driving spindle fusion is dynein-mediated sliding of oppositely oriented microtubules, a novel function for the motor, and posit that this same mechanism might also be involved in normal spindle assembly and homeostasis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据