4.8 Article

Molecular Mechanism of Rectification at Identified Electrical Synapses in the Drosophila Giant Fiber System

期刊

CURRENT BIOLOGY
卷 18, 期 24, 页码 1955-1960

出版社

CELL PRESS
DOI: 10.1016/j.cub.2008.10.067

关键词

-

资金

  1. The Wellcome Trust [056269]
  2. The Leverhulme Trust [2002/0291]
  3. The Royal Society [23313]
  4. BBSRC [85/S15289]

向作者/读者索取更多资源

Electrical synapses are neuronal gap junctions that mediate fast transmission in many neural circuits [1-5]. The structural proteins of gap junctions are the products of two multigene families. Connexins are unique to chordates [35]; innexins/pannexins encode gap-junction proteins in prechordates and chordates [6-10]. A concentric array of six protein subunits constitutes a hemichannel; electrical synapses result from the docking of hemichannels in pre- and postsynaptic neurons. Some electrical synapses are bidirectional; others are rectifying junctions that preferentially transmit depolarizing current anterogradely [11, 12]. The phenomenon of rectification was first described five decades ago [1], but the molecular mechanism has not been elucidated. Here, we demonstrate that putative rectifying electrical synapses in the Drosophila Giant Fiber System [13] are assembled from two products of the innexin gene shaking-B. Shaking-B(Neural+16) [14] is required presynaptically in the Giant Fiber to couple this cell to its postsynaptic targets that express Shaking-B(Lethal) [15]. When expressed in vitro in neighboring cells, Shaking-B(Neural+16) and Shaking-B(Lethal) form heterotypic channels that are asymmetrically gated by voltage and exhibit classical rectification. These data provide the most definitive evidence to date that rectification is achieved by differential regulation of the pre- and postsynaptic elements of structurally asymmetric junctions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据