4.3 Article

Vitamin D and estrogen synergy in Vdr-expressing CD4+ T cells is essential to induce Helios+FoxP3+ T cells and prevent autoimmune demyelinating disease

期刊

JOURNAL OF NEUROIMMUNOLOGY
卷 286, 期 -, 页码 48-58

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jneuroim.2015.06.015

关键词

Multiple sclerosis; Vitamin D; Estrogen; HeliosFoxP3 T cells; Experimental autoimmune encephalomyelitis; Prevention

资金

  1. U. of Wisconsin Graduate School Research Committee, a HATCH McIntyre Stennis Award [MSN119798, PRJ18KV]
  2. National Multiple Sclerosis Society award [RG4076A5/1]

向作者/读者索取更多资源

Multiple sclerosis (MS) is a neurodegenerative disease resulting from an autoimmune attack on the axon-myelin unit. A female MS bias becomes evident after puberty and female incidence has tripled in the last half-century, implicating a female sex hormone interacting with a modifiable environmental factor. These aspects of MS suggest that many female MS cases may be preventable. Mechanistic knowledge of this hormone-environment interaction is needed to devise strategies to reduce female MS risk. We previously demonstrated that vitamin D-3 (D3) deficiency increases and D3 supplementation decreases experimental autoimmune encephalomyelitis (EAE) risk in a female-biased manner. We also showed that D3 acts in an estrogen (E2)-dependent manner, since ovariectomy eliminated and E2 restored D3-mediated EAE protection. Here we probed the hypothesis that E2 and D3 interact synergistically within CD4(+) T cells to control T cell fate and prevent demyelinating disease. The E2 increased EAE resistance in wild-type (WT) but not T-Vdr(0) mice lacking Vdr gene function in CD4(+) T cells, so E2 action depended entirely on Vdr(+)CD4(+) T cells. The E2 levels were higher in WT than T-Vdr(0) mice, suggesting the Vdr CD4+ T cells produced E2 or stimulated its production. The E2 decreased Cyp24a1 and increased Vdr transcripts in T cells, prolonging the calcitriol half-life and increasing calcitriol responsiveness. The E2 also increased CD4(+)Helios(+)FoxP3(+) T regulatory (Treg) cells in a Vdr-dependent manner. Thus, CD4+ T cells have a cooperative amplification loop involving E2 and calcitriol that promotes CD4(+)Helios(+)FoxP3(+) Treg cell development and is disrupted when the D3 pathway is impaired. The global decline in population D3 status may be undermining a similar cooperative E2-D3 interaction controlling Treg cell differentiation in women, causing a breakdown in T cell self tolerance and a rise in MS incidence. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据