4.4 Article

Characteristics of high sensitivity ethanol gas sensors based on nanostructured spinel Zn1-xCoxAl2O4

期刊

CURRENT APPLIED PHYSICS
卷 12, 期 1, 页码 307-312

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cap.2011.06.030

关键词

Nanostructured; Crystallite size; Ethanol gas; Selectivity; Response time

向作者/读者索取更多资源

Nanocrystalline powders of Zn1-xCoxAl2O4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0) mixed oxides, with cubic spinel structure were successfully prepared by the ethylene glycol mediated citrate sol-gel method. The structure and crystal phase of the powders were characterized by X-ray diffraction (XRD) and microstructure by transmission electron microscopy (TEM). X-ray diffraction results showed that the samples were in single phase with the space group Fd-3m. TEM analysis showed that the powders with spherical shape were uniform in particle size of about 17-24 nm with mesoporous in nature. Further investigations were carried out by FT-IR. Thick films of as-prepared Zn1-xCoxAl2O4 powders were fabricated using screen-printing technique. The response of Zn1-xCoxAl2O4 based thick films towards different reducing gases (liquefied petroleum gas, hydrogen, hydrogen sulfide, ethanol gas and ammonia) was investigated. The sensor response largely depends on the composition, temperature and the test gas species. The Co (cobalt) content has a considerable influence on the gas-sensing properties of Zn1-xCoxAl2O4. Especially, Zn0.4Co0.6Al2O4 composition exhibited high response with better selectivity to 100 ppm C2H5OH gas at 150 degrees C. The instant response (similar to 7 s) and fast recovery (similar to 16 s) are the main features of this sensor. (C) 2011 Elsevier B. V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据