4.4 Article Proceedings Paper

Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions

期刊

CURRENT APPLIED PHYSICS
卷 9, 期 2, 页码 E119-E123

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cap.2008.12.047

关键词

Nanofluids; Convective heat transfer; Thermal conductivity; Heat transfer coefficient

向作者/读者索取更多资源

To investigate the effect of nanofluids on convective heat transfer, an experimental study was performed through a circular straight tube with a constant heat flux condition in the laminar and turbulent flow regime. Stable nanofluids, which were water-based suspensions of alumina and amorphous carbonic nanoparticles, were prepared by two- and one-step methods. The effects of thermal conductivity and supernatant nanoparticles of the nanofluids on convective heat transfer were investigated under different flow regimes. In alumina nanofluids containing 3 vol% of suspended particles, the increment of thermal conductivity and convective heat transfer coefficient was 8% and 20%, respectively. For amorphous carbonic nanofluids, the thermal conductivity was similar to that of water, and the convective heat transfer coefficient increased by only 8% in laminar flow. In a comparison of thermal conductivity and convection, the enhancement of the convective heat transfer was much higher than that of the thermal conductivity of nanofluids. The movements of nanoparticles enhanced the convective heat transfer at the entrance region. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据